
Simple Sync

Overview

Events

Syncing Process

v1 API

Authentication

Events

Health Check

User Management

Setup

Access Control List (ACL)

Default Behavior

ACL Structure

Wildcard Support

Rule Evaluation

Rule Examples

ACL Management

Internal Events

ACL

Users

Overview

Events

Simple Sync is a data storage system which uses the Event Sourcing pattern. It is

meant to be optimized for usage as a backend for local-first apps.

Data is represented as a sequence of events.

Each event has the following schema of 6 fields, represented as a JSON object.

Validation

1. All events are evaluated against the ACL.

2. The UUID must be a valid v7 UUID.

3. The timestamp must be a valid 64 bit unsigned integer representing the number

of milliseconds since the epoch.

4. The timestamp must match the timestamp value encoded in the UUID.

5. The user, item, and action may contain any of the following characters:

Lowercase letters

Uppercase letters

Numbers

The following punctuation: ., /, :, -, and _

. is preferred as a separator between segments, for example:

admin.123 rather than admin-123.

6. Users, items, and actions that begin with . are reserved for internal usage and

subject to additional validation.

7. The payload must be a valid JSON object encoded as a string.

{

 "uuid": "string",

 "timestamp": "uint64",

 "user": "string",

 "item": "string",

 "action": "string",

 "payload": "string"

}

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://www.inkandswitch.com/essay/local-first/
http://localhost:4321/simple-sync/acl
http://localhost:4321/simple-sync/internal-events

Any event that fails validation is not added to the authoritative history.

Data Querying

All data querying is handled locally. This means that Simple Sync is inappropriate for

situations that require millions of items. It is much better suited for systems that need

to store a small amount of items that don’t change too frequently.

Syncing Process

The syncing process ensures that all clients have the latest version of the event

history. Here’s a step-by-step breakdown:

1. Authoritative History: The server maintains the authoritative history of all

events. This is the single source of truth for the data.

2. Initial Sync: When a new client comes online, it performs an initial sync by

retrieving the entire authoritative history from the server via the API.

3. Local Events: After the initial sync, the client keeps a local history of any events

generated by the user on that client. These events are stored locally and

represent changes that have not yet been synchronized with the server.

4. Periodic Push: The client periodically pushes its local events to the server via

the API. This is typically triggered by the user (e.g., with a “sync” button) to avoid

conflicts during active use.

5. Server-Side Merge: The server receives the incoming events from the client

and merges them into the authoritative history, applying any necessary conflict

resolution or validation logic. The server will also ensure that all events follow the

rules defined in the ACL Specification.

6. New Authoritative History: The server responds to the client’s push request

with the updated authoritative history.

7. Client Update: The client replaces its local copy of the authoritative history with

the new version received from the server.

This process ensures that all clients eventually converge on the same state, while also

allowing for offline work and local data access.

http://localhost:4321/simple-sync/api/v1
http://localhost:4321/simple-sync/api/v1
http://localhost:4321/simple-sync/acl

v1 API

Authentication

All endpoints (except /api/v1/setup/exchangeToken and /api/v1/health) require

authentication via API key passed in the Authorization header as Bearer <API_KEY>.

API keys are obtained through the setup token exchange process:

1. An admin generates a setup token for a user via POST

/api/v1/user/generateToken

2. The user exchanges the setup token for an API key via POST

/api/v1/setup/exchangeToken

3. The API key is used for all subsequent authenticated requests

Setup tokens expire after 24 hours and can only be used once. Users can have multiple

API keys for different clients/devices.

Events

GET /api/v1/events

Purpose: Retrieve the authoritative event history.

Method: GET

Request:

No parameters

Response:

Success (200 OK): A JSON array of event objects.

Unauthorized (401 Unauthorized): If the user is not authenticated.

Example Request:

Example Response:

GET /api/v1/events

Authorization: Bearer <API_KEY>

POST /api/v1/events

Purpose: Push new events from the client to the server.

Method: POST

Request:

A JSON array of event objects representing the new events.

Response:

Success (200 OK): A JSON array of all event objects in the authoritative event

history (after the new events have been applied and ACL validation).

Unauthorized (401 Unauthorized): If the user is not authenticated.

ACL Validation: All incoming events are evaluated against current ACL. Events

that violate the ACL are filtered out and not added to the history. See the ACL

documentation for details.

Example Request:

[

 {

 "uuid": "a1b2c3d4-e5f6-7890-1234-567890abcdef",

 "timestamp": 1678886400,

 "user": "user.123",

 "item": "task.456",

 "action": "create",

 "payload": "{}"

 },

 {

 "uuid": "b2c3d4e5-f6a7-8901-2345-67890abcdef0",

 "timestamp": 1678886401,

 "user": "user.123",

 "item": "task.456",

 "action": "update",

 "payload": "{\"title\": \"New Title\"}"

 }

]

http://localhost:4321/simple-sync/acl
http://localhost:4321/simple-sync/acl

Example Response:

POST /api/v1/events

Authorization: Bearer <API_KEY>

Content-Type: application/json

[

 {

 "uuid": "c3d4e5f6-a7b8-9012-3456-7890abcdef01",

 "timestamp": 1678886402,

 "user": "user.123",

 "item": "item.789",

 "action": "create",

 "payload": "{}"

 }

]

Health Check

GET /api/v1/health

Purpose: Check the health status of the service.

Method: GET

Request: None

Response:

Success (200 OK): A JSON object containing the service health information.

[

 {

 "uuid": "a1b2c3d4-e5f6-7890-1234-567890abcdef",

 "timestamp": 1678886400,

 "user": "user.123",

 "item": "item.456",

 "action": "create",

 "payload": "{}"

 },

 {

 "uuid": "b2c3d4e5-f6a7-8901-2345-67890abcdef0",

 "timestamp": 1678886401,

 "user": "user.123",

 "item": "item.456",

 "action": "update",

 "payload": "{\"title\": \"New Title\"}"

 },

 {

 "uuid": "c3d4e5f6-a7b8-9012-3456-7890abcdef01",

 "timestamp": 1678886402,

 "user": "user.123",

 "item": "item.789",

 "action": "create",

 "payload": "{}"

 }

]

Example Request:

Example Response:

User Management

POST /api/v1/user/resetKey

Purpose: Invalidate all API keys for a user, requiring them to re-authenticate.

Method: POST

Authentication: Required (API key)

Request:

Query parameter: user (string) - ID of the user whose API keys to invalidate

Response:

Success (200 OK): Confirmation message

Unauthorized (401): Insufficient permissions or invalid user

ACL: Requires .user.resetKey permission for the target user, or .root access

Example Request:

Example Response:

GET /api/v1/health

{

 "status": "healthy",

 "timestamp": "2025-09-22T08:14:09Z",

 "version": "0.1.0",

 "uptime": 123

}

POST /api/v1/user/resetKey?user=user.123

Authorization: Bearer <ADMIN_API_KEY>

POST /api/v1/user/generateToken

Purpose: Generate a setup token for a user.

Method: POST

Authentication: Required (API key)

Request:

Query parameter: user (string) - ID of the user to generate setup token for

Response:

Success (200 OK): Setup token information

Unauthorized (401): Insufficient permissions or invalid user

ACL: Requires .user.generateToken permission for the target user, or .root

access

Example Request:

Example Response:

Setup

POST /api/v1/setup/exchangeToken

{

 "message": "API keys invalidated successfully"

}

POST /api/v1/user/generateToken?user=user.123

Authorization: Bearer <ADMIN_API_KEY>

{

 "token": "ABCD-1234",

 "expiresAt": "2025-09-26T12:00:00Z"

}

Purpose: Exchange a setup token for an API key.

Method: POST

Authentication: None (token-based)

Request:

JSON body with token (required) and optional description

Response:

Success (200 OK): API key information

Unauthorized (401): Invalid, expired, or used token

Example Request:

Example Response:

POST /api/v1/setup/exchangeToken

Content-Type: application/json

{

 "token": "ABCD-1234",

 "description": "Desktop Client"

}

{

 "keyUuid": "550e8400-e29b-41d4-a716-446655440000",

 "apiKey": "sk_abcdefghijklmnopqrstuvwxyz1234567890",

 "user": "user.123",

 "description": "Desktop Client"

}

Access Control List (ACL)
The Access Control List (ACL) defines the relationships between users, items, and

actions. It determines which users are allowed to perform which actions on which

items.

Default Behavior

All users can view all events. This means that Simple Sync is only appropriate for

situations where all users of the system can be trusted to view all data in the

system.

By default, a user cannot perform any action on any item unless explicitly allowed

by an ACL rule (deny all by default).

Note: there is a difference between viewing items and performing actions on

items. All users can view all items because they can read all the events.

However, they can not submit new events that perform actions on items

without ACL rules to allow it.

The .root user has implicit access to all items and actions, bypassing ACL checks.

ACL Structure

ACL rules are managed through events on a special .acl item. Each ACL event has an

action of either .acl.allow or .acl.deny and a payload containing the rule details:

Caution

Rules with empty user, item, or action fields are not allowed.

Each field supports:

Specific values (e.g., user ID, item ID, action name)

{

 "user": "string",

 "item": "string",

 "action": "string"

}

Wildcard (*) for all matches

Prefix wildcards (e.g., admin.*, task.*, edit.*) for prefix-based matching

ACL events are submitted via POST /api/v1/events and are validated against the

current ACL before being added to the authoritative event history. Invalid ACL events

are ignored.

Wildcard Support

The user, item, and action fields support the wildcard (*) to match all, and also

support prefix-based wildcards (e.g., task.*, admin.*, edit.*) to match all that start

with the specified prefix.

Rule Evaluation

ACL rules are evaluated based on specificity. For a given user, item, and action, the

rule with the highest specificity score determines whether the action is allowed or

denied. Specificity is calculated as the character count of the user, item, and action

portions of a matching rule (wildcards are worth 0.5 specificity points).

1. Item specificity takes first precedence.

2. If there is a tie in item specificity, user specificity takes second precedence.

3. If there is a tie in user specificity, action specificity takes third precedence.

4. If there is still a tie, the most recently added rule (highest timestamp) takes

precedence.

If no rule matches, the default behavior (deny all actions) applies.

Specificity Examples

For a request by user user.123 to perform edit on item task.456:

Rule Item User Action Item

Score

User

Score

Action

Score

A * * * 0.5 0.5 0.5

http://localhost:4321/simple-sync/api/v1#post-apiv1events

Rule Item User Action Item

Score

User

Score

Action

Score

B * user.123 * 0.5 8 0.5

C task.* * * 5.5 0.5 0.5

D * * edit 0.5 0.5 4

Compare item specificity: Rule C (5.5) > others (0.5) → Rule C wins.

For item task.456 and action edit, assuming no higher item matches:

Rule Item User Action Item Score User Score Action Score

E task.* * edit 5.5 0.5 4

F * * edit 0.5 0.5 4

Item specificity: Rule E (5.5) > Rule F (0.5) → Rule E wins.

For item task.456, user admin.123, action edit, with item specificity tied:

Rule Item User Action Item

Score

User

Score

Action

Score

G task.* * * 5.5 0.5 0.5

H task.* admin.* * 5.5 6.5 0.5

Item specificity tied (5.5), compare user: Rule H (6.5) > Rule G (0.5) → Rule H wins.

For item task.456, user admin.123, action edit.description, with item and user

specificity tied:

Rule Item User Action Item

Score

User

Score

Action

Score

I task.* admin.* * 5.5 6.5 0.5

J task.* admin.* edit.* 5.5 6.5 5.5

Item and user tied, compare action: Rule J (5.5) > Rule I (0.5) → Rule J wins.

Rule Examples

To allow all users to mark “task.123” as complete:

To allow user “user.456” to edit any item:

To allow all admin users to perform any delete action on any task:

{

 "uuid": "01997af2-df11-73b3-8329-e5c3affc9a05",

 "timestamp": 1758704361233,

 "user": "admin.user1",

 "item": ".acl",

 "action": ".acl.allow",

 "payload": "{\"user\": \"*\", \"item\": \"task.123\", \"action\":

\"markComplete\"}"

}

{

 "uuid": "01997af3-4299-7be7-8bd7-d01636e06d73",

 "timestamp": 1758704386713,

 "user": "admin.user1",

 "item": ".acl",

 "action": ".acl.allow",

 "payload": "{\"user\": \"user.456\", \"item\": \"*\", \"action\": \"edit\"}"

}

{

 "uuid": "01997af3-7a2f-7b65-9055-8439f87d7450",

 "timestamp": 1758704400943,

 "user": "admin.user1",

 "item": ".acl",

 "action": ".acl.allow",

 "payload": "{\"user\": \"admin.*\", \"item\": \"task.*\", \"action\":

\"delete.*\"}"

}

ACL Management

ACL rules are managed by submitting events to the POST /api/v1/events endpoint

with item set to .acl and action set to .acl.allow or .acl.deny. The payload must

contain user, item, and action fields defining the rule. ACL events are validated

against the current ACL before being added to the authoritative history; invalid ACL

events are ignored.

The current ACL state can be inferred from the authoritative event history by filtering

for .acl events. See the v1 API Specification for details on event submission.

Note: ACL events require appropriate permissions based on existing rules. The .root

user has implicit access to submit any ACL events.

http://localhost:4321/simple-sync/api/v1#post-apiv1events
http://localhost:4321/simple-sync/api/v1

Internal Events
Any event that uses a . prefix for the item or action is reserved for internal usage.

Internal events are used in two ways.

First, to allow users to trigger special functionality within the server. These events are

marked Trigger: User below.

Second, to allow the server to create an audit history for all actions triggered through

the API. These events are marked Trigger: API below. These events will always be

rejected if users attempt to add them.

ACL

Trigger: User

The .acl item is used for updating the ACL. The payload must contain a valid ACL rule.

The event’s action field must be either .acl.allow or .acl.deny.

Users

The .user. item prefix is used for events related to user administration and

authentication.

Create User

Trigger: User

The .user.create action is used for creating new users. The new user’s ID is given in

the event’s item field (for example "item": ".user.bob"). If the given user ID already

exists, the event is rejected.

Generate User Token

Trigger: API

The .user.generateToken action is used to log calls to the

/api/v1/user/generateToken API endpoint.

http://localhost:4321/simple-sync/acl

Exchange User Token

Trigger: API

The .user.exchangeToken action is used to log calls to the

/api/v1/user/exchangeToken API endpoint.

Reset User Key

Trigger: API

The .user.resetKey action is used to log calls to the /api/v1/user/resetKey API

endpoint.

	Simple Sync
	Overview
	Events
	Validation
	Data Querying

	Syncing Process

	v1 API
	Authentication
	Events
	GET /api/v1/events
	POST /api/v1/events

	Health Check
	GET /api/v1/health

	User Management
	POST /api/v1/user/resetKey
	POST /api/v1/user/generateToken

	Setup
	POST /api/v1/setup/exchangeToken

	Access Control List (ACL)
	Default Behavior
	ACL Structure
	Wildcard Support
	Rule Evaluation
	Specificity Examples

	Rule Examples
	ACL Management

	Internal Events
	ACL
	Users
	Create User
	Generate User Token
	Exchange User Token
	Reset User Key

